120 research outputs found

    Decision Procedures for Loop Detection

    Get PDF
    The dependency pair technique is a powerful modular method for automated termination proofs of term rewrite systems. We first show that dependency pairs are also suitable for disproving termination: loops can be detected more easily. In a second step we analyze how to disprove innermost termination. Here, we present a novel procedure to decide whether a given loop is an innermost loop. All results have been implemented in the termination prover AProVE

    Group Communication Patterns for High Performance Computing in Scala

    Full text link
    We developed a Functional object-oriented Parallel framework (FooPar) for high-level high-performance computing in Scala. Central to this framework are Distributed Memory Parallel Data structures (DPDs), i.e., collections of data distributed in a shared nothing system together with parallel operations on these data. In this paper, we first present FooPar's architecture and the idea of DPDs and group communications. Then, we show how DPDs can be implemented elegantly and efficiently in Scala based on the Traversable/Builder pattern, unifying Functional and Object-Oriented Programming. We prove the correctness and safety of one communication algorithm and show how specification testing (via ScalaCheck) can be used to bridge the gap between proof and implementation. Furthermore, we show that the group communication operations of FooPar outperform those of the MPJ Express open source MPI-bindings for Java, both asymptotically and empirically. FooPar has already been shown to be capable of achieving close-to-optimal performance for dense matrix-matrix multiplication via JNI. In this article, we present results on a parallel implementation of the Floyd-Warshall algorithm in FooPar, achieving more than 94 % efficiency compared to the serial version on a cluster using 100 cores for matrices of dimension 38000 x 38000

    The Quest for Optimal Sorting Networks: Efficient Generation of Two-Layer Prefixes

    Full text link
    Previous work identifying depth-optimal nn-channel sorting networks for 9≤n≤169\leq n \leq 16 is based on exploiting symmetries of the first two layers. However, the naive generate-and-test approach typically applied does not scale. This paper revisits the problem of generating two-layer prefixes modulo symmetries. An improved notion of symmetry is provided and a novel technique based on regular languages and graph isomorphism is shown to generate the set of non-symmetric representations. An empirical evaluation demonstrates that the new method outperforms the generate-and-test approach by orders of magnitude and easily scales until n=40n=40

    Sorting Networks: the End Game

    Full text link
    This paper studies properties of the back end of a sorting network and illustrates the utility of these in the search for networks of optimal size or depth. All previous works focus on properties of the front end of networks and on how to apply these to break symmetries in the search. The new properties help shed understanding on how sorting networks sort and speed-up solvers for both optimal size and depth by an order of magnitude

    Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten)

    Full text link
    This paper describes a computer-assisted non-existence proof of nine-input sorting networks consisting of 24 comparators, hence showing that the 25-comparator sorting network found by Floyd in 1964 is optimal. As a corollary, we obtain that the 29-comparator network found by Waksman in 1969 is optimal when sorting ten inputs. This closes the two smallest open instances of the optimal size sorting network problem, which have been open since the results of Floyd and Knuth from 1966 proving optimality for sorting networks of up to eight inputs. The proof involves a combination of two methodologies: one based on exploiting the abundance of symmetries in sorting networks, and the other, based on an encoding of the problem to that of satisfiability of propositional logic. We illustrate that, while each of these can single handed solve smaller instances of the problem, it is their combination which leads to an efficient solution for nine inputs.Comment: 18 page

    Automated Termination Analysis for Logic Programs with Cut

    Full text link
    Termination is an important and well-studied property for logic programs. However, almost all approaches for automated termination analysis focus on definite logic programs, whereas real-world Prolog programs typically use the cut operator. We introduce a novel pre-processing method which automatically transforms Prolog programs into logic programs without cuts, where termination of the cut-free program implies termination of the original program. Hence after this pre-processing, any technique for proving termination of definite logic programs can be applied. We implemented this pre-processing in our termination prover AProVE and evaluated it successfully with extensive experiments

    SAT Solving for Argument Filterings

    Full text link
    This paper introduces a propositional encoding for lexicographic path orders in connection with dependency pairs. This facilitates the application of SAT solvers for termination analysis of term rewrite systems based on the dependency pair method. We address two main inter-related issues and encode them as satisfiability problems of propositional formulas that can be efficiently handled by SAT solving: (1) the combined search for a lexicographic path order together with an \emph{argument filtering} to orient a set of inequalities; and (2) how the choice of the argument filtering influences the set of inequalities that have to be oriented. We have implemented our contributions in the termination prover AProVE. Extensive experiments show that by our encoding and the application of SAT solvers one obtains speedups in orders of magnitude as well as increased termination proving power
    • …
    corecore